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Abstract: An operating system provides numerous functions, such as I/O management, memory management, process 

management, and file management. Since the operating system is a set of the programs that interacts with computer 

hardware during executing time, process management is the most important function provided by an operating system. 

CPU scheduling is extremely necessary, as it makes a multi-tasking environment that keeps the CPU and I/O devices 
busy at all times which results in increased CPU utilization [1]. However, numerous scheduling algorithms have 

already been designed to regulate the access of threads and processes to the CPU, such as FCFS-SJF-SRT-RR. We 

simulated these scheduling algorithms and evaluated their performance (throughput, latency, utilization, turnaround 

time, and waiting time) in a multi-processor environment. 
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I. INTRODUCTION 

The major purpose of multiprogramming is to have more 

than one process running at all times. All computer 

resources need to be scheduled before using them; thus, 

scheduling is a main function provided by the operating 

system [1]. Since the CPU is one of a computer’s main 

resources, its scheduling technique is fundamental to 

operation system design. When we have more than one 

process that can be run, CPU scheduling determines which 

process will be run. 

As a result, resource utilization and overall system 
performance will be affected by CPU scheduling, which is 

very important [2]. There are four types of scheduling 

involved in a multitasking system, with each solving a 

scheduling problem for each area of operating system 

functionality:thelong-term scheduler, mid-term scheduler, 

and short-term scheduler.  

A. Long-Term Scheduler 

Thelong-term scheduler, or admission scheduler, is used to 

decide which process ought to be brought to the ready 

queue. When we have a process attempting to be executed, 

the long-term scheduler decides whether to admit or delay 

this process [1] [2]. 

 

B. Mid-Term Scheduler 

The mid-term scheduler is used to temporarily remove 

processes from the main memory and put them onto 

secondary memory and vice versa. This can be generally 

referred to as ―swapping processes out‖ or ―swapping 

processes in.‖ [1] [2]. 

 

C. Short-Term Scheduler 

The short-term scheduler is used to decide which 

processes in the ready queue—in the memory—are to be 
executed (allocated to a CPU) next, following a clock 

interrupt, an input–output (I/O) interrupt, an OS call, or  

 

 

another form of signal. Making scheduling decisions is 

more frequent for the short-term scheduler than for the 

long-term and mid-term schedulers. The short-term 

scheduler can be either preemptive or non-preemptive. A 

preemptive scheduler forces any process to exit the CPU 

when it decides to allocate another process to the CPU. A 

non-preemptive scheduler cannot force any process to exit 

the CPU [1]. 

The design of a high-quality scheduling algorithm plays a 

role in the success of a CPU scheduler. In addition, high-
quality CPU scheduling algorithms generally rely on 

criteria such as throughput, CPU utilization rate, response 

time, turnaround time, and waiting time. Therefore, the 

main impetus of this work is to design a generalized, 

optimum, high-quality scheduling algorithm suitable for 

all types of jobs [3].  

The main goal is to simulate the different types of CPU 

scheduling algorithms. Processor scheduling is the 

foundation of operating systems, and through advanced 

study and innovation, we have seen major improvements 

in computing power. In this paper, we will explore how 

the algorithms compute resource allocations and 
processing time, as well as their applications in the latest 

computing innovations. Our key motivation was to use the 

computing systems to reduce the cost of both the hardware 

and software, while increasing efficiency at the same time. 

Investments on software will increase significantly, both 

in the development and deployment of software systems, 

which will create the need to save on hardware 

investments. Effective use of resources and the elimination 

of upgrade costsare needed to save on hardware 

investments. There have been significant advances in the 

computing power of processors, which today are smaller, 
cheaper, and more effective than 10 years ago. This 

advancement can be attributed to a number of factors, 
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including up-to-date materials, better production methods, 

and advancement in the understanding of computing 

resources. Unlike a decade ago, we do not have over-

clocked processors or even cases where a processor is 

overpowered. 

This has led to the testing of the available processor 

scheduling algorithms, in order to determine which is best 
suited to simulate and measure. Our team faced a number 

of challenges, in which we could not decide which 

characteristic would give us the most conclusive results. 

We wanted our results to be less complicated and easier to 

implement. We overcame our challenge by starting from 

the final result we wanted and working backwards, while 

characterizing and differentiating the simulated 

algorithms. Last but not least, we wanted to provide a 

comparative analysis of the different algorithms that we 

tested and measured. 

II. SCHEDULING CRITERIA 

Since each CPU scheduling algorithm has its own 

properties, choosing a particular algorithm might favor 

one class of processes over another. To choose which 

algorithm to use in a particular situation, the properties of 

the various algorithms must be considered. We suggest 

several criteria to compare the CPU scheduling algorithms 

[1]: 

A. Utilization/Efficiency 

The CPU must be kept busy with useful work 100% of the 

time. 

B. Throughput 

The number of processes that completed per time unit. 

C. Turnaround Time 

The timefrom submitting a process to the time of 

completion. 

D. Waiting Time 

The sum of the time that processes spend in the ready 

queue. 
E. Response Time 

The time from process submission until producing the first 

response. 

F. Fairness: 

Whether the processes share the CPU fairly.   

 

An operating system must choose a process from the ready 

queue to execute whenever the CPU becomes idle. The 

short-term scheduler (or CPU scheduler) is the scheduler 

who is responsible to carry out a process to the CPU. The 

scheduler selects a process among those that reside in the 
memory, are ready to be executed, and are allocated to the 

CPU [5].  

The ready queue contains the processes that are ready to 

be executed, but is not necessarily a FIFO (first-in, first-

out) queue. It might be designed as priority queue, a FIFO 

queue, simply an unordered linked list, or a tree. All the 

processes in the ready queue are lined up and wait to be 

allocated by the CPU. When multiple processeshave 

competing requirements, the operating system must 

allocate computer resources among them. The scheduleris 

the component of the operating system responsible for 

granting the CPU access to a list of several processes that 

are ready to execute. 

In the cases of the new and exit states, there is no choice, 

in terms of scheduling. However, there is a choice in the 

ready and running cases. Under non-preemptive 

scheduling, when a process has been allocated to the CPU, 
the process will not release the CPU until it terminates or 

switches to the waiting state, such as I/O functions [1] [2]. 

III. CPU SCHEDULING ALGORITHMS 

CPU scheduling is the process of determining which 

process in the queue to allocate first to the CPU. There are 

two types of scheduling algorithms: pre-emptive 

scheduling and non–pre-emptive scheduling, which are 

divided by how they handle clock interrupts [1] [2]. 

A. Pre-emptive Scheduling 

This type of scheduling is runnable. Once the process has 

been initiated by the CPU, it can be temporarily suspended 
for a given period of time. The act of temporary 

suspending a task or taking it away is what gives it the 

name pre-emptive scheduling [1]. 

B. Non–Pre-emptive Scheduling 

This process is a clear contrast to pre-emptive scheduling 

because, once a process has been initiated in the CPU, it 

cannot be suspended or taken away. This type of 

scheduling differs from pre-emptive scheduling in a 

number of ways since the scheduler executes the job when 

the process terminates or when the process switches from 

the running to the waiting state. Another difference is that, 

unlike pre-emptive scheduling, the response times are 
predictable. The overall treatment of all processes is fair; 

even a high-priority job cannot displace the waiting job 

[1]. 

C. Priority Allocation System 

There was a need to divide processes into high-priority 

and low-priority before introducing them into the 

scheduler. A priority allocation system allows the 

scheduler to select a process with high priority, rather than 

a low-priority one. The process of priority allocation 

starting with high-priority processes presented a challenge, 

in which the low-priority processes were starved and 
lacked time in the processor. A solution for this was to 

change the priority allocating system, so that priority could 

change not only according to whether a process was high 

or low priority, but according to execution history and age. 

Other ways that are used to assign priorities to processes 

include [3] [5]:  

a. Internal or Dynamic: The priorities are assigned 

according to specific algorithms. 

b. External or Statically: Priorities are assigned by 

an external system manager before being scheduled to the 

processor. 

c. Hybrid: Priority is assigned by both internal and 
external schemes. 

D. Timer Interruption 
Timer interruption is an important process that protects the 

processes from getting stuck in an infinite loop, which will 

lead to the system hanging. Timer interruption is both 

system- and process-dependent, and is seen as a real-time 
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system. When a process is initiated in the CPU, the timer 

begins and counts in an interval. The time interval can 

expire; when it does, the process completes in the CPU. A 

new process can be installed in the processor with the 

scheduling decision. 

A content switch is an installation process that involves 

switching the processor’s context. The CPU carries a 
number of tasks, which include registering all saved and 

loaded processes, preparing the processes, and running the 

processes, once they are ready. The registered files are 

stored in the Process Control Block (PCB). The PCB has 

all of the information about the processes, and each 

process has a PCB associated with it. The PCB is vital, 

since, other than being an important data structure, it 

contains process stacks, process control information, 

process register values, and process priority and process 

identification information. The system experiences a 

change in processes from one to another to prevent system 
overload and poor performance, while maintaining the 

processes at a minimum [1] [5]. 

IV. SIMULATED CPU SCHEDULING 

ALGORITHMS 

There are different types of CPU scheduling algorithms, 

including: first-come, first-served, priority-based 

scheduling, round robin, and shortest job first. Below is a 

detailed look into each type of scheduling algorithm. 

A. First-Come, First-Served (FCFS) 

Of all the scheduling algorithms, this is the simplest and 

most effective policy. The new process usually enters the 

end of the schedule and goes on until it is complete, before 
moving to the next queue. The FCFS goes by many 

names, which are worth noting to avoid confusion: cycling 

scheduling, first in, first out (FIFO), non-priority non-

preemptive FCFS, priority preemptive FCFS (PP-FCFS, 

and priority non-preemptive FCFS (PNP-FCFS). These 

priorities are mostly used in timeshared systems. Once the 

process starts in the CPU, it holds until completion or 

when the CPU is yielded. Like any other types of 

scheduling, the FCFS has its own set of challenges, as the 

system can get stuck when there is a heavy workload that 

monopolizes the CPU. Due to this, there can be a lot of 
wasted time, since the process is made to wait at the end of 

the queue and might not get time in the CPU. This 

challenge has been introduced addressed by introducing a 

timer interruption, which limits the time of a given process 

[3] [5]. 

B. Round Robin (RR) 

 This is an improved version of the FCFS where arriving 

processes are queued as circular and placed at the end of 

the queue. The scheduler then selects the jobs that are first 

and runs them in the CPU until they are completed. During 

the process, if the time interval expires, that specific 

process is placed at the end of the queue. The pros of using 
the round-robin method is that it is simple; the cons are 

that a lot of time is wasted if the job is too large and that 

the quantum too small [4]. 

C. Shortest Job First: (SJF) 

As the name suggests, this method of scheduling chooses 

its priority based on which process has the smallest CPU 

time requirement. The dispatcher selects the shortest jobs 

in the queue and runs them to completion. One of its 

advantages is that it has a quick turnaround time; on the 

other hand starvation can occur, plus it cannot be 

implemented [1]. 

D. Shortest Remaining Time (SRT) 

This method of scheduling is similar to that of SJF, in the 
sense that the scheduler will pick the processes that have 

the shortest remaining time and move them in front of the 

queue. When the CPU is running a process and another 

process that is even shorter arrives, a preemption occurs, 

which is an interruption. This leads to the division of the 

process into two parts, thus creating additional context 

switching. The additional overhead created leads to an 

increase in both the waiting and response times. Longer 

processes in the queue are affected significantly by the 

process, which makes it hard to maintain a deadline. SRT 

experiences starvation when the CPU is running multiple 
small processes. Due to the different challenges involved 

in this policy, it is not widely used; however, those who 

still want to use it will need to use two different priorities 

[3] [5]. 

V. SYSTEM DESIGN 

We used C++ for our simulations because it allows us to 

standardize the interface, use a common base, and utilize 

our algorithm in a polymorphic way. We did not pay much 

attention to the environment in which we ran the 

simulation, since it was not affected by the operating 

system or our platform of choice. We agreed to use a 

personal laptop, which offered flexibility and made it 
easier to gather results from each team member. 

 

In the simulations, we accounted for variables like core 

active time, number of cores, process waiting time, core 

active time, and simulation duration. We simulated the 

cores as a vector of process objects; we also inserted a 

specialized idle process together with the vector, which we 

simulated as an idle core. The simulation was for 

scheduling algorithms, which are referred to as schedulers 

in the source code. We wanted to determine which process 

we could execute next and what the best scheduling 
algorithm was. The algorithms we selected from the 

common base class included: shortest-job-first (SJF), 

shortest remaining time (SRT), first-come, first-served 

(FCFS), and round robin (RR). 

 

The basic schedulable unit for our design was that of a 

process determined by its own lightweight class. We 

excluded the priority-oriented scheduling algorithm, since 

it only contributed performance drawbacks. We chose the 

double-ended queue collection for the waiting and 

completed queues in our design. We wanted to allow the 

sorting of the different queues, in order to make our 
presentation easier and also to optimize the scheduler 

implementations. In this simulator, tasks or jobs can be 

assigned to the simulator by generating an arrival time and 

burst time for each task randomly; optionally, the user can 

also assign tasks. The number of cores and number of 

tasks are identified by the user. 
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Fig.1. Simulator Main Interface 

 

The above figure shows the main interface for our 

simulator. A user will be asked to enter the number of 

cores to use in the simulation; then, the user will be able to 

enter any number of tasks or processes. Afterwards, the 

user can select an algorithm by entering 1 for FCFS, 2 for 
RR, 3 for SJF, or 4 for SRT. The user then has the ability 

to enter the burst time and arrival time for each process or 

let the simulator generate them. Then, the simulation 

process will start by pressing the ENTER key on the 

keyboard. The simulator can track the time until the 

simulation is completed. Finally, the results will be shown 

(see Figure 2). 

 
Fig. 2. Results 

VI. ANALYSIS, EVALUATION, AND FINAL 

RESULTS 

All of the measurements we collected from the various 

simulations we ran were in the form of a set of variables, 

core active time, process waiting time, process length, 

simulation duration, and number of cores. The collected 

variables were used to evaluate the scheduling algorithms. 

We derived the statistical outcomes from the data we had 

gathered from the variables. The scheduling criteria we 

used included: 

A. Average Waiting Time 
The time the process took while waiting to execute. 

B. Average Throughput 

The number of processes completed successfully per time 

unit. 

C. Average Core Utilization 

 The percentage of time the core remained active per total 

simulation time. 

D. Average Turnaround Time 

It is a taken time to complete a process. 

In the simulation, we left out the I/O bursting and its 

intended effects, since we wanted to focus on the aspects 
that affected CPU scheduling. We could also have used 

average response time for measurement, but we 

disregarded this approach because it is more specific to 

individual process instructions and thus could not fulfill 

out intended goal. All we wanted to do is distinguish the 

processes by their arrival time and length. 

Fig. 3. Avg core utilization for 100 tasks 

 

As shown in the figure above, 100 tasks were tested with 

different numbers of cores (i.e., 1, 2, 4, 8, 16, and 32 

cores) using simulated scheduling algorithms (FCFS, RR, 

SJF, and SRT). When the number of cores was increased, 

the average core utilization decreased. However, the RR 

algorithm had the highest average core utilization for all 

numbers of cores. Moreover, as shown on the figure, SJF 

and SRT are close to each other.  

 

 
Fig.4. Avg throughput for 100 tasks 

 

This figure illustrates that, as the number of cores 

increased, the average throughput (for 100 tasks) also 
increased. Here, the average throughput was almost same 

when using 1, 2, 4, or 8 cores, but there was a change in 

the average throughput percentage with 16 and 32 cores. 

However, SJF and SRT are still close to each other. 
 

 
Fig.5. Avg turnaround time for 100 tasks 
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In this figure, RR holds the highest average turnaround 

time, compared to the other algorithms, at different 

numbers of cores. The average turnaround time went down 

as the number of cores increased see figure [5].  

 
Fig.6. Avg waiting time for 100 tasks 

 

Figure 6 demonstrates that the average waiting time 

dropped as the number of cores went up. Furthermore, RR 

had the maximum average waiting time with all cores, 

while FCFS had the second highest average waiting time. 

The other algorithms (SJF, SRT) had almost the same 

performance.  

 

In the following figures, we evaluate our algorithms with 
different numbers of tasks using 8 cores:  

 
Fig.7. Avg utilization for 8 Cores 

 

The average utilization was less than 62% in the case of 
only 10 tasks. However, when increasing the number of 

tasks, the curve of average utilization also increased for all 

algorithms. 

 
Fig.8. Avg throughput for 8 Cores 

 

The average throughput decreased when we had more 

tasks to execute. When executing 80 tasks or more, the 

average throughput for different scheduling algorithms 

converged, and their percentage was minimized.  

 
Fig.9. Avg turnaround time for 8 Cores 

 

With 10, 20, and 40 tasks, the average turnaround time 
was below 150 time units, but RR reached about 420 time 

units with 80 tasks, while the others were below 350 time 

units. There was a large jump when running 160 tasks; RR 

took more than 1,900 time units, while SJF and SRT had 

the lowest average waiting times in this case. 

 
Fig.10. Avg waiting time for 8 Cores 

With fewer than 20 tasks, the average waiting time was 

less than 15 time units. However, this average increased 

with the number of processes or tasks.   

After carrying out the number of simulation, we were 

able to draw the following conclusions: 

-The shortest remaining time algorithm demonstrated the 

lowest waiting and turnaround times, compared to the 

other algorithms used. 

-The average waiting time and average turnaround time 

converged as the number of cores increased; the average 

core utilization and average throughput also converged. 

-The round-robin algorithm showed a higher rate of core 

utilization and throughput than any other algorithm we 

ran. 
-Both the round robin and the first-come, first-served 

algorithms could perform as a pair, as could the shortest-

job-first and the shortest remaining time algorithms could 

also do the same. 

VII. CONCLUSION 

In this paper, we have discussed the importance of 

multiprogramming, and how processes are scheduled 

using different CPU-Scheduling algorithms. We have also 

simulated, and evaluated those algorithms in case of multi-

core environment. In this paper, we visualized, and 

compared the performance of CPU scheduling algorithms 

with different parameters such as number of cores, and 
total number for processes. 
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VIII. FUTURE WORK 

There is a need for further study in simulation accounting 

sleeping processes, I/O bursting, irregular process 

execution, and other complexities. Moreover, an improved 

algorithm should be designed to provide more 

performance efficiency than other algorithms. More 

variables and criteria also should be used to provide a 

broader range for comparison. Finally, there is a need for 

an in-depth study of variation in process generation, which 

can be implemented to give more conclusive results when 

scheduling algorithms.   
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